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A numerical solution of the second-order 
wave-diffraction problem for a submerged cylinder 

of arbitrary shape 
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(Received 4 February 1986) 

The first- and second-order wave-diffraction problems are solved for a submerged 
cylinder of arbitrary shape by the integral-equation method based on Green's 
theorem. The integral equation is solved by an element method using cubic splines. 
The first- and second-order force components, transmission and reflection coefficients 
are presented for two different contours. The results for the circular contour are 
compared with experimental results. 

1. Introduction 
Two-dimensional, linear radiation and diffraction problems for submerged or 

semi-submerged bodies have been studied by many authors, and using a variety of 
numerical methods. Several remarkable results have been found. One of the most 
interesting is that  the reflection coefficient of a submerged, circular cylinder is zero. 
This was first discovered by Dean (1948) and has been confirmed by all later studies 
on the problem. 

Dean's method, based on the use of a conformal mapping, is not suitable if a 
complete solution of the problem is wanted. The first complete solution was given 
by Ursell (1950). He used the multipole method, and his solution was extended to 
some related problems by Ogilvie (1963). Ogilvie also computed the mean second- 
order force. 

While the radiation problem has been solved for contours of many different shapes, 
such studies are almost absent for diffraction problems. Some effort has been made 
by e.g. Lepphgton & Siew (1980) and Grue & Palm (1984) but the additional 
assumption that the cylinder is deeply submerged is made in both cases. 

A fully nonlinear solution of the diffraction problem is given by Brevig, Greenhow 
& Vinje (1981). However the steady-state problem is better solved by a perturbation 
method. This has been done for the radiation problem for a semi-submerged body 
by several authors. Papanikolaou (1984) has developed a method for solving the 
complete second-order problem for semi-submerged bodies which is very similar to 
that used here. However, so far a detailed study of the second-order diffraction 
problem for submerged bodies, including computation of the resulting wavefield has 
not, to our knowledge, been given. 

An extensive experimental study of the restrained, circular cylinder has been made 
by Chaplin (1981, 1984 (a ,  b ) ) .  He has studied the flow field and pressure distribution 
around the cylinder and has measured the different force components on the cylinder. 
His work shows that nonlinear effects can be important. This was also found by 
Longuet-Higgins (1977) in a study on a similar problem. 
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FIGURE 1 .  Diagram showing the formulation of the problem. 

Because of this background we wanted to solve numerically the second-order 
diffraction problem for a submerged cylinder of arbitrary shape. We have done this 
by applying the integral-equation method based on Green's theorem, which is chosen 
because it can be easily applied for contours of arbitrary shape. The integral equation 
is solved by the collocation method, with the solution expressed as a cubic spline. 
These polynomials are chosen because of their superior convergence properties 
compared with the more common choice of constant or linear polynomials. By this 
method we have been able to  compute the second-order force and the second-order 
reflection and transmission coefficients. The results for two different contours are 
presented and they clearly show that second-order effects can be important. A 
comparison with Chaplin's experiments shows a reasonable agreement. 

2. Formulation of the problem 
A two-dimensional periodic wave with amplitude a and frequency w is scattered 

by a submerged cylinder with contour C and its axis parallel to  the wave crests (cf. 
figure 1) .  The fluid is assumed to be incompressible and the motion is assumed to  be 
irrotational. A velocity potential & satisfying the Laplace equation then exists. 

The kinematic and dynamic boundary conditions on the free surface are 

Q t ( X ,  t )  + az(x Q, t )  Q,(S, t )  = &&x, Q, t ) ,  

-gQ(x, t )  = &&Y, Q, t )  +i(V&(X, Q, t ) ) 2 .  

(2.1) 

( 2 . 2 )  

We also assume that the cylinder is restrained and that the depth is infinite. This 
gives the additional conditions 

& = o ,  I ' = - ~ ,  (2.3) 

&n = 0, (S, Y ) E C .  (2.4) 

We now introduce the dimensionless quantities 

( 2 . 5 )  
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where M is the moment with respect to the point x = 0 ,  y = - h and F is the force 
per unit length of the cylinder. 

Consistent with the assumption that viscous effects can be neglected, we assume 
that 6 is small and expand the potential @ in a series 

(2.6) 

Since the motion is periodic we may write 

where j is the imaginary unit and 
1 
K 

$ o ( x ,  y )  = -- eKg ejKz 

is the potential of the incoming wave. This potential is correct to  third order in 6 

because the inhomogeneous terms in the equations for the second- and third-order 
potentials disappear thereby making these two terms zero. $7, #20 and $22 are 
scattering potentials due to the presence of the cylinder. 

The time-independent part of the second-order potential, $20, must probably be 
found by a different type of method than the one used in this paper. It is also clear 
from the Bernoulli equation that i t  will only give a third-order contribution to the 
force. For these reasons this potential is neglected. 

We now introduce the quantities defined in (2 .5)-(2.8)  into the boundary conditions 
(2.1)-(2.4), expand (2.1) and (2.2) in a Taylor-series around y = 0 and eliminate r. 
This gives the following boundary conditions for the potentials $7 and $,, : 

(2.10a) 

. ($h7)g-K$7 = 0, y = 0, (2.106) 

( 9 7 ) n  = - ( $ o ) n ,  (xt Y) E c3 

(#7 )u  = 0 ,  y = - ; (2.10c) 

($A = 07 b - 3  Y )  E c, 

($& = 0 ,  y = -a ; (2.11 c) 

where f ( x )  = +Kj [3K2(9(1))2 +#pi $(I)+ 2($2))2],_,, (2.12) 

(2.11a) 

( $ d U - 4 & h 2  Y = 0, (2.11b) 

and $(I)  = $o+$7.  (2.13) 

In  addition the potentials must satisfy the Laplace equation and radiation conditions 
a t  x = f co. The radiation condition for $7 is 

($7)xT j&b7 = 0, x = f a, (2.14) 

stating that the potential should be an outgoing wave at infinity. From (2.14) and 

(2.15) 
(2.12) we get 

where R, is the first-order reflection coefficient. Together with (2.1 16)  this indicates 
that $22 may be written as 

lim f ( x )  = 0, lim f ( x )  = -4KjR,, 
X+CC x-t-  m 

$22 = $ W + # R %  
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where $w is a free outgoing wave with frequency 2w. Hence 

( 9 5 w ) x ~ 4 j ~ $ w  = 0, x = 00, 

and the remaining part $R satisfies 

$ , = O ,  x = m ,  

$R = jR,, x = -00. 

This gives the following radiation conditions for C$2, : 

($,,), - 4jK$,, = 0, x = co . 
(C$,,), + 4jK$,, = - 4KRl, x = - 00. 

(2.16) 

(2.17) 

Papanikolaou (1984) does not include the inhomogeneous term in the condition a t  
x = - 00. As we shall see later, this will cause problems in the free-surface integral 
which appears in the equation for the second-order potential. 

The time-dependence of the pressure, force, moment and free-surface elevation is 
separated out in the same way as for the potential. From the Bernoulli equation we 

(2.18) obtain 
pl(x, y) = Kj$(l), 

(2.19) 

(2.20) 

where p ,  is the first-order pressure, p,, is the time-independent and pZ2  the oscillatory 
part of the second-order pressure. The tangential coordinate, s, is increasing in the 
counterclockwise direction (cf. figure 1). The corresponding components of the force 
and moment are found by integration of the pressure components around the contour. 

The surface elevation is found from the dynamic boundary condition (2.2) which 
gives (2.21) 

We notice that the cross-coupling terms between $,, and $, exactly cancel the 
constant term in $22 and hence for x = - 00 the time-dependent part of r,~ consists of 
one incoming and one outgoing wave with frequency w and one outgoing wave with 
frequency 2w. We define the second-order reflection and transmission coefficients T, 
and R, as the (normalized) amplitude of the free wave. 

Our aim is now to compute the force, moment, reflection and transmission 
coefficients. 

3. The solution method 

When the Green's function given by Wehausen & Laitone (1960), 
3.1. The Jirst-order problem 
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and the boundary conditions (2.10) and (2.14) are used we obtain an integral equation 
for the potential qh7 from Green's theorem. The equation is 

(3.2) 

We assume that the contour C can be described by the parametric equations (cf. 

x = X(B), y = y(O), e€  [O,  2n]. (3.3) 
figure 1) 

This restricts the shape of the body slightly, but should include almost all shapes of 
practical interest. We apply the relation 

ds = A ( @  do, 

where A ( @  = [(x'y+ (y')"t 13.4) 
which brings the integral equation (3.1) to the more convenient form 

We now write the solution $, as 
N 

i=l 
$7(0) = c PiBi(6) 

on C. Here Bi is the cubic spline which is non-zero on the interval [/3--2, 8,+,] and we 
define 

$7 will now be a piecewise cubic polynomial with two continuous derivatives, hence 
the velocity has one continuous derivative. Since it is unreasonable to impose a 
velocity that is smoother than the contour, we also assume that the parametric 
equations (3.3) have one continuous derivative. If this smoothness condition is not 
satisfied a modification of the splines must be used (see de Boor 1978). 

We now put (3.6) into (3.5) and require that the equation should be exactly satisfied 
a t  the points ei, i = 1 ,  ..., N .  This gives the N equations 

e, = 0, 8, = 2.n, B ~ + ~  = o i f2n .  13.7) - 

N N 

j=l j=1 
--(Bi_l(Bi)qi_l+Bi(Bi)Pi+Bi+l(Bi)q,+l)+ c Auqj = Z B,, ( i  = 1,2,  ..., N ), 

(3.8) 

where 

and we assume q i k N  = P i ?  (3.9) 

$,(0+2x) = $A@. 

which is equivalent to the zero-circulation condition 

The integrals are computed by the three-point Gauss formula on each interval 
(0,-,, S,), a method which is both computationally efficient and sufficiently accurate. 

When this system is solved, $7 is known on C from (3.6) and the first-order and 
mean pressure can be found from (2.18) and (2.19). The corresponding components 
of the force and moment can then be found by integration around the contour. 
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When the potential is known on the contour i t  can be found anywhere else from 
Green's theorem : 

Now with z = x we can find the surface elevation r , (x)  from (2.21), and after 
differentiation of (3.10) with respect to x we can find ($7)x (x, 0) and thereby vz0(x) 
from (2.22). 

3.2. The second-order problem 

An integral equation for $22 is obtained in the same way as for 4,. We use Green's 
theorem and the Green's function (3.1) with K replaced by 4K. 

When the boundary conditions (2.11), (2.16) and (2.17) are used the integrals over 
B and S,  (cf. figure 2) vanish and we obtain 

+ J f (5 )  G(z,  5;  4K)  d5+ J 4KR1 G(z,  { ( s ) ;  4K) ds, 
r s- 

where the function f (5 )  is defined in (2.12). This function is computed using (3.10) 
and the two first derivatives of (3.10) with respect to x. This avoids the loss of 
accuracy that would result if numerical derivatives were used. 

The free-surface integral is truncated by setting 

where xR is chosen so large that f(6) is sufficiently small for all 6 > xR, and xL ( < 0) 
must be sufficiently large in value that 

f (5 )  % -4KjR, ( V t  < XL)? 

G(z,  5 ;  4K) x a(z) e-*jK5 eaK7 (E < XI,). 
Substituting the angle 8 for s we then have 
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Letting z+x(G)+iy(6) we now obtain the integral equation for $,,I 
29 

= Jtr f([)G(z(6), 5;  4K)d[+R1G(z(6), xL; 4K) .  (3.12) 

Provided that xL is sufficiently large in value, the expression on the right-hand side 
will be independent of the actual choice of xL. The integral is computed by the 
midpoint rule. Papanikolaou (1984) met problems here because of the inaccurate 
radiation condition, as mentioned in $3.  He does not include the last term, which 
is the contribution from S-. Hence there is no term which counteracts the oscillatory 
behaviour of the integrand. 

This equation is solved in exactly the same way as the first-order equation. We 
write $,, as the piecewise cubic polynomial 

N 

where yi is the solution of the linear equations 

N 

with 

and the zero circulation (periodicity) condition 

Y i * N  = Yi 
is imposed. 

When (3.14) is solved #22 is known on Cfrom (3.13) and the second-order oscillatory 
pressure component, p,, can be found from (3.20). The corresponding components 
of the force and moment can be found by integration. 

From (3.11) $22 can be found anywhere in the fluid when it  is known on C. I n  
particular $22(x, 0) can be found, and hence qZ2 can be computed from (2.23). 

3.3. Numerical accuracy and convergence 

In our calculations we wanted an accuracy of 0.01 or less. This was achieved by using 
20-25 elements if some care was taken when the elements were distributed around 
the contour. The left boundary (i.e. xL) had to  be somewhere between x = - 5  and 
- 8 depending on the wavenumber, whereas the right boundary (xR) never had to be 
further out than x = 6. 

In  the Appendix an alternative calculation method for the second-order force is 
described. This gives a valuable check of the accuracy. 

A comparison with linear elements clearly shows the superiority of higher-order 
polynomials. The first-order problem can be solved with good accuracy with only 11 
cubic elements. For a long wave ( K  = 0.5) this gave a t  least as good accuracy as we 
obtained with 130 linear elements, and the computation time was reduced by a factor 
of 80. This indicates that  the introduction of higher-order polynomials is almost a 
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FIGURE 4. Mean vertical force on the circle. 

necessity for the solution of the second-order problem. I n  this respect the problem 
with the submerged body differs from the problem with the semi-submerged body, 
where constant or linear elements seem to give sufficient accuracy. This is probably 
because the flow in the narrow region between the body and the free surface is too 
complicated to be described sufficiently accurately, with a reasonable number of 
elements, by the lower-order polynomials. 

4. Numerical results 

by the equations 
We have applied the theory described in this paper to several contours described 

cos 0 -a cos 30 
1-a 

sin 0 + a sin 30 
1 -a 2 =  9 y = b  
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and we here present the results for the two cases a = 0, b = 1 which gives a circle, 
and a = 0.1, b = 0.5 which gives the following pontoon-like contour: 

4.1. The force and moment 

The first- and second-order oscillatory force components are shown in figufe 3. It is 
clear from this figure that the second-order component can be quite important for 
the long waves when the cylinder is close to the free surface. However, the second- 
order component decreases much more rapidly than the first-order component when 
the wavenumber increases beyond the maximum point or the cylinder is moved away 
from the free surface. 

The mean vertical force on the circle is shown in figure 4. It is seen to be quite 
significant even for fairly large wavenumbers. The force is directed upwards and is 
due to a lowering of the mean free surface above the cylinder. This effect is discussed 
in detail in Longuet-Higgins (1977). 

Chaplin (19846) has measured the various force components on the circular 
cylinder. The first-order and mean components agree very well with Ogilvie's (1963) 
results, which again agree completely with ours. The second-order oscillatory 
component is compared in table 1 .  The experimental values given here are valid for 
Keuleganqarpenter numbers Kc less than 1 when 

Kc = ~ C E  ePKh. 

For larger values of Kc viscous effects become increasingly important. 
A comparison between cases I, I1 and V, VI clearly shows that the variation with 

h is described very well by our theory. The variation with K ,  however, is not quite 
as good. The deviation in case I seems to be due to viscous effects, because if only 
the measurements for the lowest Kc-values are used a value much closer to ours is 
obtained. It will not be surprising if viscous effects are more important for this very 
long wave than in the other cases. The reason for the deviation in case IV is unclear, 
but it indicates that  our theory, for some reason, gives a too rapid decrease of the 
force with increasing wavenumber. 

The oscillatory force components for the pontoon are shown in figures 5 and 6. The 
values of h are chosen such that the distance from the free surface to the upper point 
on the cylinder is the same as for the circle. We notice that for this contour there 
seem to be some wavenumbers for which the force is zero. We also see that the 
nonlinear effect is much more important for the pontoon than for the circle in the 
case when the bodies are closest to the free surface, whereas the results become more 
similar when the bodies are moved away from the free surface. This is not surprising 
since the actual shape of the body obviously becomes more important when it  is close 
to the free surface. It is also to  be expected that the pontoon will have the larger 
vertical force. However it is somewhat surprising that the horizontal force seems to 
be more nonlinear than the vertical component. 

Another interesting nonlinear effect is shown in figure 7 where the oscillatory 
components of the moment are plotted. The first-order moment has its maximum 



32 T. Vada 

Parameters 
Experiment 

h K Case Theory (Chaplin 19846) 

2.0 0.206 I 0.31 0.39 
2.0 0.365 11 0.33 0.33 
2.0 0.570 IT1 0.21 0.21 
2.0 0.821 IV 0.09 0.16 
3.0 0.206 V 0.06 0.05 
3.0 0.365 V I  0.04 0.05 

TABLE 1. Comparison of second-order oscillatory component 

F 

1 .o 

0 2.0 4.0 
K 

FIGURE 5. First- and second-order horizontal oscillatory forces on the pontoon. (a) h = 1.0; 
( 6 )  1.25; (c) 1.5; ---, IFl'il; -, lF22*iI. 

for wavelengths about twice the length of the body, as one would expect. The 
second-order moment on the other hand shows a similar behaviour as the forces. This 
has the consequence that unless e is very small, the second-order component gives 
the dominant contribution to the moment for the long waves. 

The mean vertical force and mean moment are shown in figure 8. The moment is 
negative, as expected, but it is very small. The force shows the same behaviour as 
for the circle, but again we get a significantly larger value for the smallest value of h. 

4.2. Transmission and reflection coeficients 

In  figure 9 the second-order transmission coefficient for the circle is shown. The result 
is quite surprising. For the smallest value of h we see that the amplitude of the 
4K-wave can be of the same size as the amplitude of the first harmonic. This results 
in a transmitted wave like the one shown in figure 10. This very strong nonlinear effect 
is also immediately observed in a wave tank. Unfortunately there are, as far as we 
know, no measurements of the amplitude of the second harmonic for the restrained 
cylinder. Longuet-Higgins (1977) has measured it for a circle that was restrained only 
in the vertical direction. Since this cylinder will give some reflection of the incoming 
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0 2.0 4.0 
K 

FIGURE 6. First- and second-order vertical oscillatory forces on the pontoon. ( a )  h = 1.0; 
( b )  1.25; ( c )  1.5; - - -. 14.jJ; ---, lFzz*jl. 
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0 1 .o 2.0 3.0 4.0 
K 

FIGURE 7. First- and second-order oscillatory moment on the pontoon. (a )  h = 1.0; ( h )  1.25; 
( c )  1.5; - - -, M , ;  -, M z z .  

wave we would expect the amplitude of the transmitted wave to be somewhat smaller 
than for the restrained cylinder. For K = 0.3, h = 1.67 he found T2 x 1.2 whereas 
we obtained T2 = 1.85 for the restrained cylinder with the same values of h and K. The 
difference is perhaps a bit too big, but we think that this confirms that the results 
shown here are in reasonable agreement with what actually happens. 

As mentioned earlier, R,  = 0 for the circle. We were therefore particularly 
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FIGURE 9. Second-order transmission coefficient for the circle (TI = 1.0) 
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FIQURE 10. The surface elevation in natural scale for K = 0.56, E = 0.16, h = 1.5, T = 0. 

interested in finding out whether the same was true for the second-order coefficient. 
I n  the computation we obtained values of R, in the order 0.01. This is of the same 
size as the estimated numerical accuracy of the method, but the result seems 
significant as we obtained a smooth sinusoidal behaviour of the potential. Hence we 
believe that there is a very small reflected second-order wave, but for all practical 
purposes R, z 0. This is in agreement with the experiments of Chaplin and others. 

The second-order transmission coefficient for the pontoon, shown in figure 11, 
shows the same features as for the circle. Figure 12 shows that the same effect is 
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FIGURE 11. Second-order transmission coefficient for the pontoon (TI % 1 .0). 

7 

R 

1 .o 2.0 
K 

(c) 1.5; -, R , ;  ---, R,. 
FIGURE 12. First- and second-order reflection coefficients for the pontoon ( a )  h = 1.0; ( b )  1.25; 

present in the reflected wave as well, but it is not quite as dramatic as for the 
transmitted wave. The maximum value of the first-order reflection coefficient 
corresponds to a mean horizontal force of 0.065 so this component of the force is 
always very small. 

5. Conclusion 
From the results presented in this paper we conclude that second-order effects can 

be important for cylinders close to the free surface. The effect is most important in 
the description of the wavefield, but the force may also be significantly affected. From 
the comparison with Chaplin’s experiments we believe that the effect can be obtained 
with reasonable accuracy by the method presented. 

The work on this paper was done as part of my dr.scient studies at the Section 
for Mechanics, Department of Mathematics, University of Oslo under supervision of 
Professor Enok Palm, who gave very helpful advice a t  several stages of the work. 
I also want to thank John Grue for useful and interesting discussions. 

Appendix. An alternative computation of the second-order force 
Applying the Haskind relations (cf. Newman 1977) i t  is possible to compute M,, 

and F,, without the solution of the $,,-problem. Instead a set of first-order problems 
must be solved. 

If #i is the first-order radiation potential for an oscillation with frequency 2 w ,  where 
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i = 1 , 3 , 6  corresponds to the sway, heave and roll respectively, we get from Green's 
theorem (cf. figure 2) 

As in $ 3  we truncate the integration over r by setting 

Jf J J L  

where!(() is sufficiently small for 6 > sR and 

f(t) x -4KjR,, 
This gives 

$&, 0) = A, ePKjg e4K1 for 5 < xL. 

where the right-hand side is independent of xL if IxL1 is sufficiently large. 9- L. ince 

($&), = ni, 1: = 1,2, 

($i)n = ( r  x n ) - k ,  

we see that the integral of the first term in (3.20) can be calculated by (A 1 ) .  
This method has been used in several works on the second-order radiation 

problems. However, since the solution for the potentials on the free surface is needed, 
the solution of each of the first-order problems is equally time-consuming as the 
solution of the second-order problem. Hence, unless these potentials are already 
known, this method is far more time-consuming than the direct, solution of the 
second-order problem. I n  addition to this, we wanted to find the second-order surface 
elevation as well as the force, and for this calculation the second-order potential is 
needed anyway. For these reasons we have only use this method to check the results 
for a few sets of the pararnetcrs. 

i = 6, 
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